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The Asymptotic Expansions of Hankel 
Transforms and Related Integrals 

By Robert F. MacKinnon 

Abstract. In this paper, the asymptotic expansion of integrals of the form f F(kr)f(k) 4kis 
considered, as r tends to infinity, and where F(kr) are Bessel functions of the first and secQnd 
kind, or functions closely related to these. Asymptotic expansions for several functions of 
this type are presented under suitable restrictions on f(k). The expansion given by Willis for 
Hankel transforms is seen to be valid under conditions of f(k) less restrictive thtn those 
imposed by that author. 

1. Introduction. The evaluation of the Hankel transform fO J,(kr)f(k) dk 
is a problem often arising in mathematical physics. So-called far-field approximations 
are of major interest and correspond to large values of the parameter r. A mnethod 
for obtaining an asymptotic representation of the transform as a series in reciprocal 
powers of r was given by Willis [1], who obtained as results the following: 

(1.1) J~~co fk(dk -I?2K-L(0)? l3fi'v(0) 
J O(kr)f (k) dk r 2 r 23'2! r5 + 

and 
co f~~ f0 fI(O) I?..f....1"(Q)~ (1.2) f .A(kr)f(k) dk +4 + 

where the primes denote differentiation with respect to k. As Willis pointed out, 
his restriction that f(k) be regular analytic in the entire k-plane was too restrictive, 
since it could be shown that (1.1) remained valid for the function (1 + k)-, as well 
as for a variety of functions of the type prescribed. 

The Bessel function J,(kr) is oscillatory, so it is natural that consideration be 
given to the results available concerning the asymptotic representations of Fourier 
integrals. Several results given by Erdelyi [2] are used below, in particular: 

THEOREM A. If (a, /) is a finite inter-val, and p(k) is N times continuously dif- 
ferentiablefor a ? k < ,B, then 

(1.3) J eikr 0(k) dk BN(r)- AN(r) + o(rN') 

where 

N-i 

(1.4) AN(r) - E i ( (a)r-e 
n=O 
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and 
N-i 

(1 .5) BN(r) = E i nl1c(n)(f3)ler-n-le" 
n-O 

THEOREM B. If ?(k) is N times continuously differentiable, for k _ a, 4'n)(k) -O 0 
as k -- c, n = 0, 1, 2, N. ,N- 1, and 1kIN)(k) is integrable over (a, co), then 

(1.6) f eik'4(k) dk = N- A(r) + o(r-N). 

In order to apply these theorems to Hankel transforms, it is convenient to assume 
that all functions f(k) are continuously differentiable except possibly at a finite number 
of points. Thus, the range of integration may be divided into intervals over which 
f(k) is continuously differentiable except possibly at endpoints in which case integrals 
are defined through imposition of appropriate limits. 

The above theorems can be used to obtain corresponding results for the kernels 
cos kr and sin kr. The exact forms these results take are not essential to the analysis 
below. The relevant property of the expansions is that the terms AN(r) and BN(r) 
are linear in ck and its derivatives evaluated at the endpoints; and this property will 
be maintained for the trigonometric kernels. It is assumed implicitly that 0(k)eikr 
does not possess points of stationary phase in the range of integration, since their 
presence entails contributions at points other than a and 3. 

2. Relationships to Fourier Integrals. For kr > 0, J,(kr) may be expressed 
in the form (Watson [3]) 

(2.1) J,(kr) (2/7rkr)"/2[cos XP(kr, v) - sin xQ(kr, v)], 

where 

(2.2) x = kr- iv7r-, 
M 

(2.3) P(kr, v) >3 (-)m(v, 2m)(2kr)-2" + o(r-2M), 
tn-0 

and 
M-1 

(2.4) Q(kr, v) = (-)'(v 2m + -1)(2kr)Y2m l + o(r-2M). 
m-O 

We define the function J(kr, v, M) such that 

(2.5) J(kr, v, M) = (2/irkr)"/2[cos XP(kr, v) - sin xQ(kr, v)], 

where P and 0 are the finite sums appearing in (2.3) and (2.4), respectively. Now, 
2M r? 

J J(kr, v, M)f(k) dk = E amrm f1/2 cos krf(k)km 1/2 dk 
(2.6) a m-O 

+ bmr-m-l/2 sin krf (k)km ^ 1/2 dk, 

where am and bm are linear combinations of the coefficients of the terms in P and 4. 
Theorems A and B may be applied to the integrals appearing in (2.6) to yield 
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expansions of o(r N-1/2) where, by choice, 2M > N. The expansion of each integral 
for a given m is a sum of terms linear in f(k) and its N - 1 derivatives, the number 
of terms being dependent on m and N. The resulting asymptotic approximation is 
linear in am, bm and in f(k) and its derivatives. 

Theorems A and 13 impose the requirement that +(k) be N times continuously 
differentiable in (a, i3), Theorem B requires that 4) n) (k) -O 0 as k -o for 0 ? n _ 
N - 1 and that 4) N)(k) be integrable over (a, co). If f(k) possesses these properties, 
so does f(k)k-l-l 2 for m _ 0 and a > 0. 

Since, for some finite value F(M, v), 

I J,(kr) - A(kr, v, M)I < F(M, v)k-2M122M-1/2, 

it follows that 

(2.7) J,f J,(kr) - J(kr, v, M)} f(k) dk < F(M, v)r 2M'1/2 If(k)l k-2M-1/2 dk, 

hence, if lf(k)l k2M"2 is integrable, 

(2.8) f J,(kr)f(k) dk - J(kr, v, M)f(k) dk + o(rF2M). 

Thus, the following propositions may be stated. 
LEMMA 1. If (a, [) is afinite intervql and f(k) is N times continuously differentiable 

for 0 < a < k < 3, the asymptotic approximation of fr J,(kr)f(k) dk to o(r N- 1/2) 

equals the asymptotic approximation of f J(kr, v, M)f(k) dk to o(rFN- 12), provided 
that 2M > N. 

LEMMA 2. If f(k) is N times continuously differentiable for k 2 o > 0, f ") (k) -* 0 
as k -+ o, 0 < n S N - I, and f`(N(k) is integrable over (a, a)), then the asymptotic 
approximation of f J,(kr)f(k) dk to o(r N- 1/2) equals the asymptotic approximation of 
f J(kr, v, M)f(k) dk to o(r N- 1/2)9 provided that 2M > N. 

If +(k) is infinitely differentiable in (a, [B), Theorems A and B imply that asymp- 
totic expansions may be formed by allowing N to tend to infinity, that is to say, 
AN and BN become infinite series (denoted as A. and Bco) the remainders for which 
are less in order than any negative power of r. For this situation, there exists an 
asymptotic expansion for f J(kr, v, M)f(k) dk, M finite, in which appear derivatives 
of f(k). to all orders. The asymptotic approximation of this integral to o(r N- 1/2) 

consists of a sum of terms, finite in number, which are o(rN- 1/2) or less. These 
observations lead to the following lemma. 

LEMMA 3. If (ac, [) is a finite interval and f(k) is infinitely diferentiable 
for 0 < a _ k < ,then the asymptotic approximation of f aJ,(kr)f(k) dk to o(r N- 1/2) 

equals a partial sum of the asymptotic expansion of fP J(kr, v, M)f(k) dk, provided 
that 2M > N. 

3. Integrals with a Neutralizer. We introduce now a van der Corput neutralizer, 
-(k), defined as follows: 

(3.1) r7(k) q (a, 0) ea e-/(ua)-1/(B8) du, 

where 
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q(a, ) = f e(a)e-l/(u-a)-l/(-u) du. 

This neutralizer has the properties that 
1. it is unity at k = a; 
2. it is finite and infinitely differentiable over (a, ,B); 
3. its value at A and the values of all its derivatives at a and #B are zero; 
4. it retains the properties 1-3 as A -+ oo. 
Consider now the asymptotic expansion of fJ t n(k)J(kr, v, M) dk where in(k) 

denotes (an/n!)(k/a - 1)'-(k). As a result of properties 2 and 3, Theorem A may 
be applied to (2.6) to yield 

2M 
I n(k) J(kr, v, M) dk E a,.r- 

1/2 
UN(r; n; m) 

(3.2) Ja -0 

+ brnrmfl/2 VN(r; n; m) + o(r-N-1/2) 

where UN and VN are linear combinations of AN defined by (1.4) for ?4i with +(k) 
taken to be k "-1/2 n(k). Except for the nth derivative whose value is unity, the 
derivatives of (n(k) are zero at a; thus, UN and VN each consist of a sum of a finite 
number of nonzero terms, those terms which arise in the approximation to o(r- N-1/2 

as factors of the nth derivative at a. In other words, (n(k) serves to isolate the factors 
of the nth derivative at a. In the extension of (2.6) for an infinitely differentiable 
f(k), UN and VN appear as factors of f (n(a). Thus, because of the linearity in f1"1(a) 

in the expansions of Fourier integrals, 
2 2M X 

(3.3) IJ(kr, v, M)f (k) dk E- arml2: I (f(!UN ;m 
a m-O n-O 

+ bmr-l/2 af In) (a) VN(r; n; m) 
n-0 

+ terms at ( + o(r-N-1/2) 

co 2M 

(3.4) 
f (~~~~~n) (a) amr m-1~/2 UN(r; n; m) 

n=O mn-0 

+ bmrm/ VN(r; n; m) + terms at (3 + o(r ) 

It is to be noted that for a given N, UN(r; n; m) and VN(r; n; m) are zero for n > 

N - m - 1, since terms arising under this condition are o(r N- 1/2). Since (n(k) is 
infinitely differentiable, N may be taken arbitrarily large so that (3.4) is seen to be 
an asymptotic expansion for an infinitely differentiable f(k). These observations lead 
to the following lemma. 

LEMMA 4. If (a, 3) is a finite interval and f(k) is infinitely differentiable for 0 < 
a ? k ? (3, the asymptotic approximation of f J,(kr)f(k) dk to o(r N- 1/2) contains 
terms evaluated at a which are those terms to o(r N- 1/2) in the asymptotic expansion, 

Eof("(o) fw (k - 1) J,(kr)q(k) dk. 
n=O n! a c 

If the most that can be said of f(k) is that it is N times continuously differentiable, 
the sum proceeds over n from 0 to N - 1. 
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Similar lemmas can be derived for the terms at ,B and for infinite intervals of 
integration. In particular, for the terms at ,B, the following lemma holds. 

LEMMA 5. Under the conditions of Lemma 4, the terms to o(r N-f1/2), evaluated 
at f, are the terms to o(r-N-1'2) in the asymptotic expansion of 

E ' L JvJ(kr)( - 1 (1 - q(k)) dk. 

4. Integrals for k < a. It is to be expected that, as r tends to infinity, the 
behaviour of f(k) near the origin becomes critical in the determination of the trans- 
form. Suppose f(k) is expandable in a Taylor series in the interval - e1 < k < 2a + e2, 
with a > 0 and el,2 > 0. Since a Taylor series is uniformly convergent within its 
radius of convergence, it follows that 

(4.1) f J,(kr)f(k) dk = a f(a) f ( - 1) J,(kr) dk, 

(4.2) EJ J,(kr)kn dk. 
n-0 n. 

Let the functions G(x, n, v) and C(n, v) be defined by 

(4.3) f u J,(u) du = C(n, v) + G(x, n, v). 

Properties of C and G are given by Luke [4]; in particular, 

(4.4) C(n, v) = 2nr + ;+ )/( - + ) 

and, as x tends to infinity, 

(4.5) G(x, n, v) -- (2/irx)Y'2x^n(h cos x + g sin x), 

where h and g possess asymptotic power series expansions in x. Equations (4.4) 
and (4.5) are valid if R(n + v) > -1. It is shown below that the C(n, v) appear as 
coefficients in the asymptotic approximation of Hankel transforms. 

5. Approximation to Hankel Transforms. The results given abQve can be used 
to derive expansions for integrals of J,(kr)f(k) under various conditions on f(k) 
and on the intervals of integration, provided that f(k) is continuously differentiable 
at all but a finite number of points in the interval. Suppose an interval (a, 'y), finite 
or infinite, with a > 0, is divided into two regions (a, fi) and (fA, y) such that f(k) 
is N times continuously differentiable over (a, A) and N' times continuously dif- 
ferentiable over (,B, y) with N' > N. Further, suppose that f(n)Q3) is continuous at 
A for n = 0, 1, 2, * , j < N. Under these conditions, the first j terms, evaluated 
at f in the expansions for (a, A) and for (d, a), cancel. This can be seen from an 
application of Theorem A and/or B to integrals of J(kr, v, M)f(k), M > WN. The 
approximation to o(r 

- 
1/2) of the integral over (a, y) will not contain terms eval- 

uated at ,B, which is to be expected since f(k) is j times continuously differentiable 
in (a, y). An approximation to o(r- -1/2) with N < p < N', would contain terms 
evaluated at ,B in the limits taken from above and from below. For generality of 
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proof, it is not necessary to consider more than one subdivision of the interval (0, ao). 
A case of practical interest is dealt with in the following theorem. 
THEOREM 1. The asymptotic approximation of the Hankel transform of afunction 

f(k) may be expressed in the form 
OD ~~~N -I f0~() I 

(5.1) J .b(kr)f(k) dk = n ( 'n+1 C(n, v) + o(rFN-1/2), 

where C(n, v) = 2nr + n + r - n+ 1) 

provided that 
(1) R(v) > - 1; 
(2) f(k) is regular analytic in a region of the complex k-plane which includes an 

interval -e1 ? k < ,B + 62,for e, E2 and f3 > 0; 
(3) f(k) is N times continuously differentiable for k > 0; 
(4) as r -> co, ei krf(k) have no stationary points for k > ,B/2; 
(5) k-1/2f()(k) - O as k ', n = 0,1, * * , N- 1; and 
(6) k-1/2f (N)(k) is integrable over (co, a'). 

Proof. Choose et so that 0 < a < (0 + E2)/2 and there are no stationary points 
in (a, ,B) for e: 'krf(k). Consider the intervals of integration (0, a), (a, ,B) and (,B, co). 
The asymptotic approximation of the integral over (0, ,B) may be expressed as a 
sum of the expansion of the integral from (0, a) given by (4.1), the terms to o(r- N- 1/2) 

in the expansion given in Lemma 4 and the terms to o(r N- 1/2) evaluated at ,B. The 
terms at a to o(r- N 1/2) for (a, ,B) plus the expansion are the terms to o(r N- 1/2) 

of the sum 

ODn) 
an!(j 

(a - 1)n J(kr) dk 

+ E 
I 

f ) a ( () k) J.(kr) dk 

(5.2) a t f (( - 1) H(k) Jv(kr) dk 

(5.3) = , E(O) f J;(kr)k H(k) dk, 

where 

H(k) = rl(k), for a < k < ? 

= 1, for O < k _ a. 

The function H(k) and all its derivatives are continuous at k = ,B. 
Now, from integration by parts, 

(5.4) f J,(kr)knH(k) dk = r n 'C(n, v) - r-n H'(k)G(kr, n, v) dk, 

where the prime denotes differentiation with respect to k. The function G(kr, n, v) 
is of the same form as J,(kr), in the sense that it possesses an asymptotic expansion 
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in negative powers of kr with cofactors sin kr and cos kr. The conditions leading 
to Lemma 3 are satisfied by G(kr, n, v) and its asymptotic approximation to o(r- M- 1/2), 

M > N; hence, since H'(k) and all its derivatives are zero at a and at ,B, and since 
there are no stationary points in the interval (a, ,B), 

(5.5) f J,(kr)kIH(k) dk = r"'C(Qn, v) + o(r- 11 1/2), 

where M > N. 
Now, from Lemmas 1 and 2 and from the forms of An(r) and Bn(r) given in (1.4) 

and (1.5), it follows that the terms at ,B to o(r N- 1/2) arising from the asymptotic 
approximation to the integral over (<x, ,B) cancel the terms at , to o(r- N- /2) arising 
from the asymptotic approximation to the integral over (p3, co). There are no terms 
arising at infinity or from stationary points. Hence, the only terms remaining are 
those to o(r N- 1/2) in the expansion 

(5.6) E Ek(?) )kH(k) dk = E n( Cn+, 
n- n! JJ(k)H() n-0 n! r~~ 

(5.7- 
N- f ~(nO )C(n, v) N12 E (O)C(n, + o(r-N/2) 

n0n! r 

The theorem follows immediately. Q.E.D. 
COROLLARY. Under the conditions of the theorem, the asymptotic approximation 

of the Hankel transform may be expressed in the form 
co N-1 

(5.8) J J,(kr)f(k) dk = E (-)_fy(n)O)y(n, r, v) + o(r-fN/2), 
n-O 

where -y(n, r, v) is the nth term in the asymptotic power series expansion of the trans- 
form of ek. 

This follows immediately from an application of the theorem to e-k. In essence, 
this corollary is a confirmation of the observation of Willis [1] for Hankel transforms 
under less restrictive conditions of f(k). For example, the theorem and its corollary 
apply to (e + k)- for e > 0. 

Consider a function k 'f(k), where f(k) satisfies the conditions for the validity 
of (5.1) and v is not an integer. Because of its branch point at the origin, this function 
does not satisfy the conditions of (5.1). Since k J,1(kr)f(k) is well-behaved near k 0, 
it is to be expected that the above conditions are too restrictive with regard to be- 
haviour near the origin. It is well known (Luke [4]) that 

(5.9) f u'+nJ,(u) du = D(n, v, 4) + E(kr, n, v, IA), 

where 

(5.10) D (n, v, ,u) = 21'u n rv + n + u + l)r v -A n + l) 

and 

(5.11) E(kr, n, v, IA) --' (27r/kr)1/2 (kr)f+"(h cos x + g sin X), 
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where h and g possess asymptotic power series expansions in the reciprocal of kr, 
under the condition that R(, + v + n) > -1. The arguments leading to the theorems 
given above, which rely on properties of C(n, v) and G(kr, n, v), apply equally well 
to D and E. Thus, extensions of these theorems are readily obtainable as follows. 

THEOREM 2. The asymptotic approximation of the Hankel transform of a function 
k"f(k) may be expressed in the form 

co m ~~~~f(l) (Q) 1 
(5.12) f J,(kr)k'f(k) dk = E D(n, v, IA) + o(r-N-1/2-R(;), 

where D(n, v, IA) = 2-+nr + + 
n 

+ )/r( - 

n + ) 

and m is chosen such that m + 2 + R(,u) > N + X > m + 1 + R(,u), provided that 
(1) R(l + v) > -1; 
(2) f(k) is regular analytic in a region of the complex k-plane which includes an 

interval -e1 < k ? 0 + E2, for e1, E2 and / > 0; 
(3) f(k) is N times continuously differentiable for k > 0; 
(4) as r -- co, e'*k'f(k)k' have no stationary points for k > A/2; 
(5) the nth derivative of k-I/2f(k) tends to zero as k -+ c, n = 0, 1, , N - 1; 

and 
(6) the Nth derivative of k- 1/2f(k) is integrable over (p, cx). 
Proof. As before, choose a such that 0 < a < I(f + e2) and consider the intervals 

(O, a), (a, ,) and (p3, co). The terms in the asymptotic expansion to o(rm--l/2I (p0) 

of the integral over (a, f3) must be those terms to o(rl /28R (ju)) in the asymptotic 
expansion 

Ea n! (a) (k 1) k J (kr)r,'(k) dk. 

Adding to these terms the integral from (0, a), one finds terms of the form 

E0) f J(Gr)k*+ILH(k) dk, 
n-o n' 

where H(k) is defined as above. Now, provided R(,u + v) >-1, 

J,/(kr)k"+"H(k) dk 

(5.13) = r - D(n, v, ,) + r-" f H'(k)E(kr, n, v, IA) dk, 

(5.14) = r 1 D(n, v, ,I) + o(rMl/2), 

where M is chosen greater than m + R(,u). 
From applications of Theorems A and B and Lemmas 1 and 2, it can be shown 

that the terms evaluated at /3 for (Al, co) cancel terms at ,B for (a, ,B) to o(r N- l/2.-I2 (). 

Hence, the asymptotic approximation of (5.12) follows immediately. Q.E.D. 
Through use of Lemma 5, the finite Hankel transform can be treated similarly, 

but the results do not appear to be satisfactory. To the terms in (5.13) must be added 
terms from I3, the upper limit. For ,u = 0, these terms are terms from the expression 
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? d E r_n-( )-^ -G(3r, m, v) 
(5.15) n-O n 

0 irk\ m 

= 
co 

-1) fm))-- G(,Or, n, v) 
n-0 (mn (m - n)? n! 

Since r 'G(f3r, n, v) does not decrease in order of r as n increases, these expressions 
are not generally convenient for purposes of numerical evaluation. 

6. Approximations for Related Integrals. The arguments leading to Theorem 2 
may be applied immediately to integrals of Y,(kr), the result being the following 

theorem. 

THEOREM 3. The asymptotic approximation to the Y-transform of k'f(k) may 
be expressed in the form 

co m (n) 
f Y,(kr)kAf(k) dk = f ~( ) -n-1( r K(n, v, q) + o(r-N-1/2-R()) 

(6.1) n-0 n! 

where K(n, v, A) =- 2r +r +2 ?n + ? r _+n2 + 1) sin(u + n - /2, 

and m is chosen such that m + 2 + R(,) > N + .1> m + I + R(,u), provided that 
(1) R(ji ) > - 1; 
(2) f(k) satisfies conditions (2)-(6) of Theorem 2. 
Consideration of oscillatory factors of the form exp(iklrl), , ? 1, leads to a 

number of useful results for widely used functions of mathematical physics. The 
following is a particular case for a more general result of Erdelyi [2]. 

THEOREM C. If ?(k) is N times continuously differentiable for a ? k < A3, then, 
for > 1, 

(6.2) qsf(k) exp(irFk) dk = BN(r") - AN(r") + o(rVIN), 

where 
N-i 

(6.3) AN( r) _E g( )(a)e',(l)/2ru(n+') exp(irua"), 
n-0 

N- 1 

(6.4) N(r") - E gln)()eT(nl+l)/2rI`(n +l) exp(ir"j"), 
n-0 

and where 

(6.5) g) (k)- [(k=)] 
d(k")n4" 

It is assumed that the integrand does not possess points of stationary phase in 

the interval of integration. As before, 4(k) and its derivatives are seen to appear 
linearly in A N and B. The arguments of Lemma 4 may be reapplied to yield the 

following result. 

LEMMA 6. If (a, 3) is a finite interval and f(k) is infinitely differentiable 
for 0 < a ! k < , the asymptotic approximation of fr exp(ik"r')f(k) dk to o(r-N) 
contains terms evaluated at a which are those terms to o(rFIN) in the expansion 
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E 'f"!(a) f exp(ik r )Q - 1) X(k) dk. 
nt) 1! a 

For Theorems 1-3, use has been made of the asymptotic expansions of integrals 
of Bessel functions. A more general formulation may be obtained for functions 
F(kr) which are continuous and integrable for 0 < k ? x < o and which possess 
an asymptotic expansion of the form 

(6.6) F(kr) - am(kr)-m'+ exp(ik"r'), U _ 1. 

The integral T(xr, n) may be written as 

(6.7) T(xr, n) = f F(kr)k' dk 

(6.8) = T(ar, n) + , amrm+ ' k- m+n+v exp(ikcr) dk + o(r-N+v) 
m-0 

(6.9) - T(ar, n) - TN(ar, ti) + TN(xr, n) + o(rAN+v) 

where 
N 

(6.10) TN(xr, n) = E a ,rm'+ 'BN'm, mr(rA), 
m=O 

1V' 

(6.11) TvN(ar, n) = E amr' +YAN,.mm(rm) 

with B, m and A, , defined for integer p as the Bp and A, of (6.3) and (6.4) with +(k) 
k-m+n+ and where N' is an integer greater than ,AN. 

From (6.9), it follows that T(xr, n) may be expressed in the form 

(6.12) T(xr, n) = S(n, r) + TN(xr, n) + o(rNv ^), 

where S does not depend on x. It is to be noted that the terms of TN possess a factor 
exp(ir'x'). This result is a generalization of (5.9) and is used in the proof of the 
following theorem. 

THEOREM 4. The asymptotic approxiination to o(rFfN< ) of the integral 
fO' F(kr)f(k) dk may be expressed in the form 

(6.13) f F(kr)f(k) dk = , E () S(n, r) + o(r-AY), 

where M is taken sufficiently large to include all terms in S(n, r) to o(r -f+ ^) and where 
S(n, r) is defined by 

(6.14) f F(kr)kn dk = S(n, r) + TN(xr, n) + o(r-"+v) for x > 0, 

provided that 
(1) F(kr) is continuous and integrable in the range 0 < k < x < o and possesses 

an asymptotic expansion as kr - o of the form F(kr) = exp(iklrM)(kr)' , 0 ai(kr)' 
with ji ? 1; 
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(2) f(k) is regular analytic in a region of the cos-plex k-plane which includes an 
interval -E1 ? k < 3 + E2, for El, E2 and : > 0; 

(3) f(k) is N times continuiously differentiable for k > 0; 
(4) as r -* oo, exp(?ik'r')f(k) do not possess points of stationary phase for k > A/2; 
(5) [kvf(k)]In) -*Oask ---* cforn = 0, 1, 2, ,N- 1;and 
(6) [kvf(k)]I N1 is integrable over (/, cx). 
The proof follows the same line of reasoning as in the previous theorems. The 

asymptotic approximation of the integral of F(kr)f(k) over (0, /8) may be expressed 

as the sum of terms in fIn,(O)T(ar, n) with the terms to o(r'F+v) in the expansion 

given in Lemma 6 and any terms at /3. The terms at /3 for (a, /3) cancel the terms for 

(3, oo) to the order prescribed. The terms remaining are those terms to o(r-^f+P) 

from the expansion 

f (0) f F(kr)ktII(k) dk 
n-90 n- 

(6.15) - 
! J) H(k)-d T(kr, n) dk 

n!Z. dk 

(6.16) E f () FS(, r)- TN(kr, n) dk H(k) dk + o(rF"N+ P) 
n=0 nI! 

L 
dk 

where TN is defined by (6.10), and H(k) is the neutralizer function previously defined. 

Because of the factor exp(ikMr') in TN, the integral over (a, /3) vanishes to any pre- 

scribed order of r as can be shown through application of Theorem C. The result 

given by (6.13) follows immediately. Q.E.D. 
For the purposes of computation, it is worthwhile to note that, as r -e c, 

(6.17) f ekF(kr) dk E (- X)'S(n, r)/n!. 
() ~~~~n=O 

7. Discussion. As examples of applications of Theorem 4, consider the sine 

and cosine integrals si(x) and ci(x). The required properties and results can be obtained 
from [5]. Since ci(x) ' p(x) sin x - q(x) cos x where 

p(x)- x1(1 - 2! x2 + 4! X4 - 

and 

q(x) x-2(1 - 3! X-3 + 5! X-5 
- 

condition (1) of Theorem 4 is satisfied with u 1 and v -1. 
Now, 

(7.1) f ek ci(kr) dk = (2r)-1 (-)mrl 2i/ n 
n t=0 

so that 

(7.2) A ci(kr)f(k) dk = - 2I fl(2i)(0) (N1') 

where M is such that I(N + 1) > M > IN, provided that f(k) satisfies the conditions 

of the theorem. Similarly, it can be shown that 
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(7.3) f si(kr)f(k) dk - (0 + I)r2n+ nl0r22n 

As another example consider sin k2r2. It is well known [5] that the Fresnel integral, 
defined by 

(7.4) S(x) = () sin u du, 

has an asymptotic expansion of the form 

(7.5) S(x) 2_, . + g(X) COS x2 + h(x) sin X2 

where g and h possess asymptotic power series expansions in x-l. The Laplace trans- 
form of sin k2r2 yields the expansion 

J e- sin U2r2 du = 2 2 cos + sin 2 
(7.6) 2r L 

r 
co 

n~ ( 4nr12-2n 3 

2r 1-_0 3 ... (4n + ) 

Hence, it may be concluded that 

| f(k) sin k2r2 dk 
2 i + f "(?) 

f 
(iv)(o) ] 

(7.7) 21 ___ - (V( 32 
l I ff (0), f (v) (0) 

+2r Lr 60r$ 

which may be verified easily for the integrals 
co 

2 2 dk 7r 1/2 (b2 
\( b2 

(7.8) f Jo(bk) sin k2r2 dk = - sin -2 - J0 2 
- 2r '\r 4)\8r/ 

and 

(7.9) J1(bk) sin k2r2 dk = - 4 2 

An interesting facet of these expansions is that the function exp(ibk- ik2r2) 
possesses a stationary point at k = b/2r2. As r -* c, this point moves arbitrarily 
close to the origin. The theorem does not apply to the integral 

co 
2 2) ~ 1 r2.jr 

(7.10) f si(b2k2) J(kr) dk - Si 2 + 2 r L4b 2/2 

An application of (1.2) yields only 7r/2r. It appears that the other term arises because 
of the stationary point k = r/2b2 which, as r tends to infinity, does not remain con- 
fined to an interval 0 < k ? fl/2 < o as required by condition (5). 

Further examples of the application of Theorem 4 are provided by the Fresnel 
integrals [5] defined by (7.4) and the following: 

(7.11) C ()1/2 COS u2du. 
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It can be shown readily that 3 - S(kr) and I - C(kr) satisfy requirement (1) of 
Theorem 4. From their Laplace transforms, one obtains the following results for 
suitable f(k): 

co 
I~~k 1 0 fO f"'t(O) 

(7.12) L {2 - S(kr)}f(k) (27r)1/2 r 8 r 64 r4 

(2~ 1/2 i v) (o) I () (?) + o(r_8), 

\il 120 r5 768 r6' 

o I2 -C(kr)}f(k) dk = _1 f'(O) 1()/2 1 f"(O) I f"'(O) J -C(kr)} f(k) dk = - 2 - 31 r 64r 
(7.13) 08r 

+ 1 f ,( 0) + (2)1/2 1 () + o(r8). 
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